Marche aléatoire sur [0,1]:

Référence: Lesesvre, 131 développements pour l'oral.

Théorème 1. Soit $p \in]0,1[$, (U_n) une suite de v.a.i.i.d suivant une loi uniforme sur [0,1], et (B_n) une suite de v.a.i.i.d suivant une loi de Bernoulli de paramètre p. Toutes les variables ainsi introduites sont indépendantes. Posons $X_0 = x$ où $x \in]0,1[$, et $X_{n+1} = U_nX_n + B_n(1-U_n)$. Alors,

$$X_n \xrightarrow[n \to +\infty]{} X$$
 en loi où X suit une loi $\beta(p, 1-p)$

Schéma de la preuve :

- 1. <u>Lemme 1</u>: Si (b_n) est une suite convergente, et si $a \in [0,1[$ alors toute suite (u_n) vérifiant $u_{n+1} = au_n + b_n$ est convergente.
- 2. On pose $m_{n,k} = E(X_n^k)$ pour tous $n, k \in \mathbb{N}$. But : trouver une relation de récurrence. Après calcul on trouve :

$$m_{n+1,k} = \frac{1}{k+1} m_{n,k} + \frac{p}{k+1} \sum_{i=0}^{k-1} m_{n,i}$$
 (Δ).

- 3. Par récurrence forte sur k, et en utilisant (Δ) et le lemme 1, on montre que $(m_{n,k})_{n\in\mathbb{N}}$ converge pour tout $k\in\mathbb{N}$. On note m_k la limite.
- 4. En passant à la limite dans (Δ) , on trouve que

$$m_k = \frac{1}{k!} \prod_{i=0}^{k-1} (p+i).$$

5. On calcule les moments de X, qui suit une loi $\beta(p, 1-p)$, en utilisant entre autres les relations

$$B(\alpha, \gamma) = \frac{\Gamma(\alpha)\Gamma(\gamma)}{\Gamma(\alpha + \gamma)}$$
 et $\Gamma(z + 1) = z\Gamma(z)$

on trouve que

$$E(X^k) = m_k.$$

- 6. <u>Lemme 2</u>: La convergence des moments d'une suite de v.a. (X_n) à valeurs dans [0,1] vers ceux d'une loi de probabilité μ sur [0,1] implique la convergence en loi de (X_n) vers μ .
- 7. Par le lemme 2, on obtient le résultat attendu.

Remarques : pour que la démonstration tienne en quinze minutes, j'énonce les lemmes 1 et 2 sans les démontrer. Il ne faut pas trainer sur le reste.

Questions:

- (X_n) peut-elle converger en loi vers une variable de loi uniforme sur [0,1]?
- Pourquoi $P(X_n = 1) = 0$?
- (X_n) est une chaine de Markov. Y-at-il une mesure stationnaire?
- Que se passe-t-il dans le cas où p = 0?
- Donner les grandes lignes de la preuve du lemme 1.